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The problem considered is the entry of a thin symmetric wedge impinging 
normally on the free surface of a compressible inviscid liquid, gravitational 
effects being neglected. Since the body is thin, the problem is a linear one, and 
its solution is possible for the whole range of Mach numbers of the body’s motion 
in the liquid. It is shown that the free-surface elevations are lowered considerably 
as the Mach number increases, and that the presence of the free surface acts so 
as to lower the pressure differences arising from compressibility. 

1. Introduction 
The treatment of the entry problem of a body impinging on the free surface of 

a liquid necessitates dealing with two time-dependent material surfaces, and the 
problem is thus one particularly difficult to solve. Considerable simplification 
may be achieved if the motion is geometrically similar at  each instant of time 
(e.g. Cumberbatch 1960). However, even in this case, the inherent difficulty 
of having non-linear boundary conditions must still be overcome. To avoid 
this difficulty, Mackie (1962) has considered the impinging body to be thin and 
has used a linearized theory in the case of a thin wedge entering the liquid surface 
normally with uniform speed. In  two further papers (1963, 1965), he has dealt 
with the impact of a thin, two-dimensional body of arbitrary shape in normal 
motion and has evaluated the effects of gravity on the motion. 

In  the present paper, it is intended to allow for the effect of compressibility 
of the liquid in the entry problem dealt with by Mackie. In  his papers mentioned 
above, the influence of compressibility is neglected since it will obviously be 
small for thin pointed bodies unless the impact velocity be large. For example, 
in the case of water, the speed of small pressure fluctuations is 3200m.p.h. 
(at SOC) and therefore the entry velocity U of the body must be as great as 
640 m.p.h. in order to achieve a Mach number M = 0.2 for the body’s motion in 
water. It is not difficult to envisage at the present time impacts taking place at  
this and greater velocities, and therefore it is intended to evaluate the effects of 
liquid compressibility for what is perhaps the simplest case open to consideration, 
namely that of a thin symmetric wedge in normal motion, ignoring gravitational 
effects. Although the body is thin, some of the compressible effects it introduces 
on striking the liquid are quite evident even for low Mach numbers. For example, 
it is shown in §4 that for 1M = 0.2 the free-stream elevations are lowered on 
average by about 10 yo from those of the incompressible case. 

For previous work dealing with the impact of bodies at the surface of a com- 
pressible fluid, the reader is referred to papers by Ogilvie (1963) and Skalak & 
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Feit (1963). These papers deal with the entry problem for a blunt-nosed body in 
the initial stages of the motion for small depths of penetration. In  this case the 
speed at which the liquid covers the body surface is much greater than the speed 
of sound in the liquid, and it is found that the effects of compressibility cannot 
realistically be ignored. 

The criterion for neglecting the effects of gravity on the motion is that 
gt/U < 1 (Mackie 1963), where t denotes the time elapsed since the vertex of the 
wedge first touched the free surface. For entry velocities fast enough for com- 
pressibility effects in the liquid to have a significant contribution, it would thus 
appear that gravity terms may be safely ignored for some time after impact. 

Finally, in the work which follows, it is assumed that the pressure of the 
gas in contact with the free surface of the liquid will remain constant. In practice, 
this is tantamount to assuming that the density of the gas pg < p, the density 
of the liquid, so that any motion set up in the gas by the moving body does not 
affect the liquid motion. It is perhaps worth while to examine this question more 
closely, especially since the Mach number in the gas M g  B M ,  the corresponding 
Mach number in the liquid, thus making the occurrence of shock waves in the 
gas, with the attendant pressure effects, very likely. In  the gas flow about the 
thin wedge of small semi-vertex angle B the pressure changes present are: 

(i) O(pg U%) in linearized theory when Mg is not large and not near unity, 
(ii) O(p, U2& for Mg near unity, and 
(iii) O(pg U2e2) for Mg large in the hypersonic range. 

On the other hand, in the liquid, the linearized theory of the present paper yields 
(see 3 5) pressure changes of O(pU2e) valid for all M less than the hypersonic range 
of Mach numbers. Thus, pressure effects in the gas are much less than those which 
arise in the liquid in the various cases, provided that 

(i) PglP G 1, 

and (iii) pse/p < 1. 

2. Formulation 
It is assumed that a compressible liquid is at rest a t  t = 0 and occupies the 

space y < 0 in the (x, y)-plane. The remaining space, y > 0, is occupied by a gas. 
The symmetric wedge moves in the negative y direction with constant speed U 
and impinges at  t = 0 on the liquid surface. Since the wedge is thin, having a 
small semi-vertex angle 8 ,  the velocity q = (a, v, 0)  of the liquid is small, so that 
u/Uand v/U are O(s). The free surface of the liquid is given at  time t by y = ~ ( x ,  t ) ,  
where 7 is taken in the linearized theory to be small and O(B),  so that the free 
surface can be approximated by its initial level y = 0. 

The motion is assumed to be irrotational and described by a potential function 
+(x, y, t ) ,  where q = Vq5. q5 satisfiesthelinearizedpotentialequation, i.e. thesimple 
wave equation 
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where a is the speed a t  which small disturbances are propagated in the liquid. 
The linearizing assumptions apply over the whole range of Mach numbers 
M ( = U/a)  below the hypersonic range, including the sonic region near M = 1. 
No difficulties are encountered near M = 1 in the present problem since the 
region influenced by the body is always finite, so that small disturbances caused 

" f  

FIGURE 1. Regions influenced by the body at time t .  (a )  M < 1, ( b )  M > 1. 

by the passage of the body through the liquid will not build up by superposition 
as they do for steady flow in an infinite region. The regions of liquid set into motion 
by the body at  time t are shown in figures 1 (a )  and (b)  for M < 1 and M > 1, 
respectively, the depth penetrated in each case being equal to Ut.  

Since the motion is symmetrical it is sufficient to consider only the region 
x > 0. The wedge is defined as x = e(y+ Ut)  H ( y +  Ut), where H ( y +  Ut) is the 
Heaviside unit function. Both the wedge and the free surface are 'material sur- 
faces ', and thus the equations to be satisfied on these surfaces are given by 

(2) 
D 
E { Y - q W ) )  = 0 on Y = Y@,t) ,  

and 
D 
- {x - s(y + U t )  H(y + Ut)]  = 0 on x = s(y + Ut)  H(y + Ut) for y < 0, 
Dt 

(3) 
37-2 
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where DIDt = apt  + q . V denotes the substantive derivative. The boundary 
conditions (2) and (3) may be replaced by the simple linear equations 

( 5 )  
a4 and - =  cUH(y+Ut)  on x =  0 for y <  0, 
ax 

in which only terms of first order in E have been retained. 
A third condition to be satisfied is that of constant pressure Po on the gas- 

liquid interface. Bernoulli’s equation for an unsteady compressible fluid of den- 
sity $, pressure P, under no body forces is 

The arbitrary function of time usually appearing in this equation is absorbed 
into the potential function $. The assumption is now made that the pressure P 
in the liquid differs only slightly from the constant value Po of the gas. Neglecting 
the velocity-squared term in (6), which is of O(e2),  then 

P-P, = -poa$jat, (7) 

where po denotes the density of the undisturbed liquid. The pressure difference 
P - Po vanishes on the free surface y = ~ ( x ,  t ) ,  and thus (7)  leads to the boundary 
condition 

applicable on y = 0 with no loss of accuracy. 
To summarize, the problem is reduced to finding a solution of (1)  for y < 0 ,  

x > 0 satisfying the boundary conditions (5) on x = 0 and (8) on y = 0. Of par- 
ticular interest are the free surface elevation, which can be determined from (4), 
and the pressure distribution on the wedge, which can be obtained from (7) as 
x 3  0. 

(8) a$pt = 0, 

3. The operational solution 

A Fourier cosine transform may therefore be defined by 
Referring to figure 1, it may be seen that @ is zero for x > at at a given time t .  

in which the variable x is replaced by the operator p .  In  addition, the Laplace 
transform, defined by 

allows the variable t to be replaced by the operator aq. Applying these transforms 
simultaneously to the wave equation ( I ) ,  it  follows that 
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It has been assumed in deducing (1 1) that 4 = 0 and a#/at = 0 a t  t = 0. This latter 
condition follows from (7)) taking P = Po at t = 0. Now from (5)) employing a 
Laplace transform, 

= (sM/q) egg'M. (12) 

Inserting (12) into the right-hand side of ( l l ) ,  a solution of the differential 
equation in y is required which will remain finite as y -+ - 00. This may be written 
down directly as 

A(p, q) is an arbitrary function which may be determined from the operational 
form of the boundary condition (8). Using the condition 4 = 0 at t = 0, (8) yields 

N 

$ = o  on y = o .  (14) 

On determining A(p ,q ) ,  the operational form of the velocity potential finally 
reduces to 

4. The free-surface elevation 
Rather than to proceed with the inversion of the operational solution (15)) 

it is more rewarding to consider the simpler problem of determining the free- 
surface elevation or splash profile represented by r ( ~ ,  t ) .  This approach carries 
with it the advantage that this profile is easily visualized. To this end, (4) is 
differentiated with respect to time, and the operational form of a2r/at2 is found, 
using the solution (15). Assuming ar/at = 0 at  t = 0, then 

It appears that the double operational transform (1 6) may be inverted directly 
from the standard tables in three special cases only-namely (i) M = 0, (ii) M = 1, 
and (iii) M 9 1. In  cases (ii) and (iii), the inversions of the Laplace transforms in 
q lead to Bessel functions which are very conveniently replaced by simple 
irrational functions on finally inverting the Fourier cosine transforms in p .  
The simplification which ensues in these special cases suggests that the general 
case may be carried out more simply by a direct method. This is in fact the case, 
and investigation leads to an inversion procedure which could equally well be 
applied to the more complicated operational solution (15). To illustrate this 
procedure in the present case a slightly more complicated operational form than 
that in (16) is chosen. This is given by 
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which reduces to the expression in (16) when 7, a real constant, is put equal to 
zero. The reason for the introduction of this number 7 will appear shortly. As 
will be seen, it allows certain singularities which occur in the Q-plane (defined 
below) to be displaced in such a way as to make valid a simple inversion with 
respect top. 

The inversion formulae from the Fourier and Laplace transforms are now 
employed together with (17) to yield 

where the integrand in q is analytic in some half-plane R(q) >/ 6. Putting 
q = pQ, then 

The path of integration in the complex Q-plane is along the straight line 
R(Q) = cr ( = &/p), which passes to the right of the singularities of the integrand, 
The singularities occur at the branch points Q = & i - 7 ,  and, for 7 small. 
((71 6 l l -M[) ,  eitherat thesimplepole 

Q = - ~ / ( 1 - ~ 2 ) + + M 2 7 / ( 1 - & ! 2 ) + 0 ( 7 2 )  if M < 1, 

or at  the two simple poles 

Q = 4 i M / ( M 2 -  1)$ - M27/(M2 - 1) + 0(72) if 1M > 1. 

Thus, provided 7 is small and positive, the number cr can be chosen such that 
- M  < - 7  < cr < 0. This condition makes it possible to arrange for the path 
of integration in the &-plane given by R(Q) = r~ to pass to the left of the imaginary 
axis while still retaining the singularities of the integrand on its left. Selecting the 
path R(Q) = cr in this way, (19) may now be taken a step further, since 

Som exp (atQp) cospx dp = [exp {(at& + ix)p} + exp {(at& - ix)p}] dp 

= - atQ/(a2t2Q2+ x2), (20) 

which is valid if R(Q) = cr < 0 for a > 0, t > 0. Using (20)) assuming that the 
change in order of integration is justified, (19) becomes 

The path of integration R(Q) = cr < 0 passes to the right of the singularities given 
above. However, in addition to these singularities, the integrand in (21) has 
two new singularities, both simple poles, occurring at  the points Q = ix/at. The 
path of integration R(&) = cr passes to the left of the new singularities, and thus 
theintegral in (21) may be conveniently replaced by the sum of residues of these 
two simple poles. This may be proved by integrating round the contour bounding 
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a semicircle defined by IQ - g\ < R, R(Q) > cr, ContainingthepointsQ = ix/at, 
and then letting R + ax On the curved portion of the semicircle, the integrand 
behaves like O(R-2), while the arc length is of O(R) as R becomes large. Thus the 
integral over the curved portion is of O(R-l) and does not contribute as R + co. 
Evaluating the residues at the simple poles Q = +ix/at ,  and putting 7 = 0, it 
follows finally that 

(22) 
a2r-- 2aU (1 - (x /Ut)2  M2}* - 
at2 nt 1 + (X/Ut)2(1)M2)' 

(22) may be obtained in an alternative manner, dispensing with the constant r. 
This, however, entails deforming the path of integration in the &-plane on in- 
verting the Laplace transform so that (20) may be validly used. Certain difficulties 
which arise due to singularities on the imaginary axis have to be overcome. 
(22) is integrated twice with respect to t ,  making use of the end conditions 11 = 0, 
ar/at = 0 when x = at. The free-surface elevation in terms of y = x /Ut  then 
becomes 

+ 2 7  t a r1{ (  1 - M2y2)*/y} + I, (23) 

-1 
where I =  

and 
- 2  

(M2- l)* 
I =  tan-l{( 1 - M2y2)* ( M 2  - l)*} if M 2 1. 

The splash profiles are shown in figure 2 for (n/a) (q /Ut )  against x /Ut  for various 
Mach numbers, including the incompressible case first derived by Mackie (1962). 
As can be seen, there is no special significance about the result for M = 1. In  
each case the depth penetrated by the wedge is Ut at time t. The areas under the 
splash profiles are not equal to the immersed area of the wedge, except of course 
in the incompressible case M = 0. The profiles in fact illustrate how the amount 
of compression of the liquid builds up as the Mach number increases, since the 
elevations are more and more confined to the regions near the wedge. The total 
increases in area of the free surface are approximately 10% less for M = 0.2, 
25 yo less for M = 0.5 and 45 yo less for M = 1, compared with that of the cor- 
responding incompressible case M = 0. 

For a wedge of small but finite semi-vertex angle a the maximum elevation 
occurs where the free surface of the liquid meets the side of the wedge. The value 
of x at this point is given approximately by x = eUt, and expanding (23) for 
a small it  follows that the maximum free surface elevation is given by 

q/Ut = - ( 2 ~ / ~ ) l o g a + ( 2 l o g 2 / M - 2 + I ~ ) ~ / n + O ( a ~ ) ,  1241 

where 

and 
2 tan-l(M2-1)* if M 2 1. 

I0 = (M2- I)* 
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Outside the wedge, on the liquid surface, the elevations are thus seen to be small, 
and this shows that the errors made in deriving the linearized boundary con- 
ditions (4) and (8) are in general of O(e2).  
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FIGURE 2. Free-surface elevations ~ ( x ,  t )  for a thin wedge of semi-vertex angle E 

a t  time t ,  for various Mach numbers M of the body’s motion in the liquid. 

5. The pressure distribution and drag 

tiation with respect to time then yields 
The pressure at  different points in the liquid may be found from (7).  A differen- 

Incorporating the conditions # = 0 and arjjat = 0 at t = 0, the operational form 
of (25) may be found from the solution (15), i.e. 
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The transform (26) is now in a form which may be inverted directly by a method 
similar to that given in the last section. In  the special case 2 = 0, the result is 

= o  
( 2 7 )  applies without loss of accuracy on the surface of the wedge, where x is 
O(E) ,  since the order of neglected terms is already 0(e2) .  The pressure P on the 
wedge may therefore be obtained by an integration with respect to time, using 
the condition P+P0 as y+ 0 for a fixed value oft. The result may be written in 
terms of a pressure coefficient C, = (P - Po)/&po U2,  and the ratio, p ( = - y /Ut) ,  
in the form for M < 1, 

a n d f o r M 2  1 ,  

= e/(M2- 1)' for Ut 2 - y 2 at. J 
The pressure distributions for a range of Mach numbers are given in figure 3, 
which shows CJE against P ( =  - y /Ut ) .  For M > 1, Cp = e / ( M 2 -  1)* = const., 
for Ut > - y at. This result is identical with that occurring in the linearized 
theory of a thin wedge placed in a supersonic stream of infinite extent, and is as 
might be expected from referring to figure 1 (b). This result does, however, pro- 
vide a convenient check on the pressure coefficient C, in the region at > - y 
as it increases from zero at  the free surface to e/(M2- l)* when y = -at. 

C,dP is shown in figure 4 as a function of M. 

It is interesting to note that the maximum drag coefficient occurs at  M = 1. 
An attempt has been made to compare these results with those calculated from 
the Prandtl-Glauert rule, shown as a broken line in figure 4. This rule applies 
in the case of an aerofoil moving subsonically in an infinite medium and predicts 
an increase in drag by a factor of 1/( 1 - M2)' due to compressibility, giving 
C'(M) = C'(O)/(l - M2)*. It can be seen that the actual drag increase due to com- 
pressibility is in fact very much less than would be expected using the Prandtl- 
Glauert rule. For example, at M = 0.7 the drag coefficient is only 10 yo larger 
than the incompressible result, while the rule quoted above predicts an increase 
of 40 yo. It would thus appear that the free surface, in providing by its presence 
a surface of free movement on which the pressure is a constant, acts as a means of 
relieving the effects of compressibility. As a consequence, smaller pressure 
changes due to compressibility are caused, in comparison with those experienced 
in an infinite medium. This effect is also borne out by the curves of different Mach 
numbers shown in figure 3. The percentage pressure differences between the 
curves are smaller for - y/ Ut small, near the free surface, than those for - y/ Ut 
taking larger values, a t  points nearer the vertex of the wedge. 

The drag coefficient C, = E s: 
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FIGURE 3. The pressure coefficient C, = ( P  - P,)/+po U 2  on the 
wedge for various values of M .  
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6.  Conclusion 
The effect of compressibility has been evaluated for two important properties 

of the normal motion of a thin symmetric wedge into the free surface of a com- 
pressible liquid. The complete range of Mach numbers M is allowed for in the 
linearized theory used, and no difficulties are experienced near M = 1. The two 
properties considered are: 

(i) the free-surface elevation, and 
(ii) the pressure distribution and drag. 

In (i), the splash profiles obtained illustrate directly the considerable area 
compression (per unit thickness) which is taking place. The steepening and con- 
centrating of the profiles into regions close to the body as M increases can also 
be seen. In  (ii), results show that the effects of compression for small M are less 
marked than might at  first have been expected. This may be explained by the 
double role which the liquid-gas interface plays in providing a surface at  constant 
pressure which is able to move freely. 

Finally, it may be noted that no direct use has been made of the geometric 
similarity of the motion a t  each instant of time. Thus it would appear likely that 
the double-transform approach used in the present paper could be extended 
to deal with the normal motion of a thin symmetrical aerofoil of arbitrary shape, 
either finite or infinite in length. 
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